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Abstract
The theory of scale relativity provides a new insight into the origin of
fundamental laws in physics. Its application to microphysics allows us to
recover quantum mechanics as mechanics on a non-differentiable (fractal)
spacetime. The Schrödinger and Klein–Gordon equations are demonstrated as
geodesic equations in this framework. A development of the intrinsic properties
of this theory, using the mathematical tool of Hamilton’s bi-quaternions, leads
us to a derivation of the Dirac equation within the scale-relativity paradigm.
The complex form of the wavefunction in the Schrödinger and Klein–Gordon
equations follows from the non-differentiability of the geometry, since it
involves a breaking of the invariance under the reflection symmetry on the
(proper) time differential element (ds ↔ −ds). This mechanism is generalized
for obtaining the bi-quaternionic nature of the Dirac spinor by adding a
further symmetry breaking due to non-differentiability, namely the differential
coordinate reflection symmetry (dxµ ↔ −dxµ) and by requiring invariance
under the parity and time inversion. The Pauli equation is recovered as a
non-motion-relativistic approximation of the Dirac equation.

PACS number: 03.65.Pm

1. Introduction

The theory of scale relativity consists of generalizing to scale transformations the principle of
relativity, which has been applied by Einstein to motion laws. It is based on the giving up of the
assumption of spacetime coordinate differentiability, which is usually retained as an implicit
hypothesis in current physics. Even though this hypothesis can be considered as roughly
valid in the classical domain, it is clearly broken by the quantum mechanical behaviour. It
has indeed been pointed out by Feynman (see, e.g., [1]) that the typical paths of quantum
mechanics are continuous but non-differentiable.
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In the present paper, after a reminder about the Schrödinger and Klein–Gordon equations,
we apply the scale-relativistic approach to the understanding of the nature of bi-spinors and
of the Dirac equation in a spacetime representation. A step in this direction has been made
by Gaveau et al [2] who have generalized Nelson’s stochastic mechanics [3] to the motion-
relativistic case in (1 + 1) dimensions. However, an analytic continuation was needed to obtain
the Dirac equation in such a framework, and, furthermore, stochastic mechanics is now known
to be in contradiction with standard quantum mechanics as concerns multitime correlations in
repeated measurements [4].

In the framework of a fractal spacetime viewed as a geometric analogue of quantum
mechanics [5, 6], Ord has developed a generalized version of the Feynman chessboard model
which allows him to recover the Dirac equation in (3 + 1) dimensions, without analytical
continuation [7–10]. We develop in the present paper an approach involving also a fractal
spacetime, but in a different way: namely the fractality of spacetime is derived from the giving
up of its differentiability, it is constrained by the principle of scale relativity and the Dirac
equation is derived as an integral of the geodesics equation [11]. This is not a stochastic
approach (the use of statistically defined quantities is derived and we do not use Fokker–
Planck equations), so that it does not come under the contradictions encountered by stochastic
mechanics.

One of the fundamental reasons for jumping to a scale-relativistic description of nature
is to increase the generality of the first principles retained to construct the theory. From a
principle known as Occam’s razor, the laws and structures of nature are the most general
and simple laws and structures that are physically possible. It culminates nowadays in
Einstein’s ‘general’ relativity and his description of gravitation as a manifestation of the
Riemannian geometry of spacetime, obtained by giving up the Euclidean flatness hypothesis.
However, Einstein’s principle of relativity is not yet fully general, since it applies to
coordinate transformations that are continuous and, at least two times, differentiable. The
aim of the theory of scale relativity is to bring to light laws and structures that would
be the manifestation of more general transformations, namely continuous ones, either
differentiable or not. The standard ‘general relativistic’ theory will be recovered as the
special differentiable case, while new effects would be expected from the non-differentiable
part.

In the present work, we focus our attention on the microphysical scale of motion in a non-
differentiable spacetime, in the framework of ‘Galilean scale relativity’ [12], i.e. we consider
fractal power law dilations with a constant fractal dimension. Therefore, we recover, from
the first principles of this theory, (i) the four main evolution equations of standard quantum
physics as geodesics equations on a fractal space/spacetime, namely the Schrödinger, (free)
Klein–Gordon, Pauli and (free) Dirac equations and (ii) the nature of the wavefunctions that
appear in these equations, which are, respectively, complex, spinor and bi-spinor quantities.
Indeed, as we shall see, the non-differentiability has two main consequences: (i) the fractality
of the geometry that generates the purely quantum terms in the equations and (ii) discrete
symmetry breakings at the infinitesimal level that lead to successive algebra doublings in the
description of physical quantities.

The derivation of the Schrödinger equation is given in section 2, where we actualize the
former works dealing with this issue, proposing a more accurate interpretation of the nature
of the transition from the non-differentiable (fractal quantum scales) to the differentiable
(classical scales) domain, and carefully justifying the different key choices made at each
main step of the reasoning. An analogous updating is proposed in section 3, for the free
Klein–Gordon equation acting on a complex wavefunction. We obtain, in section 4, the bi-
quaternionic form of the same Klein–Gordon equation, from which the Dirac equation then
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the Pauli equation naturally proceed, as shown in sections 5 and 6. The appendix is devoted
to the presentation and justification of the mathematical tools we use.

2. The Schrödinger equation revisited

The Schrödinger equation is derived, in the framework of scale relativity, as a geodesics
equation in a fractal three-space (see, e.g., [12–14]). In the present section, we update and
give a more precise meaning to some of the most subtle issues we are dealing with.

2.1. Transition from non-differentiability (fractal scales) to differentiability (classical scales)

The aim of the present subsection is to identify the consequences of the giving up of the
coordinate differentiability. We develop here the formalism relevant for the derivation of the
non-motion-relativistic Schrödinger equation, valid in a fractal three-space with the time t as
a curvilinear parameter.

Strictly, the non-differentiability of the coordinates means that the velocity

V = dX

dt
= lim

dt→0

X(t + dt) − X(t)

dt
(1)

is undefined. This implies that, when dt tends to zero, either the ratio dX/dt tends to infinity,
or it fluctuates without reaching any limit. This problem is overcome in the scale relativity
framework thanks to the following fundamental theorem: a continuous and non-differentiable
(or almost nowhere differentiable) curve is explicitly scale dependent, and its length tends to
infinity when the scale interval tends to zero [12, 13, 15]. In other words, a continuous and
non-differentiable space is fractal, in the general meaning given by Mandelbrot to this concept
[16]. The velocity V (t), though it is undefined in the standard way, can now be defined in
a new way as a ‘fractal function’ [12], V (t, δt), which is explicitly dependent on the scale
interval δt . As recalled in previous works [12, 17, 18], these explicit scale variables can be
defined only in a relative way (only their ratio has a physical meaning) so that the description
of the scale space in which they lie is expected to come under a theory of scale relativity.

In the case of a constant fractal dimension D, the relation between the position resolution
interval and the time resolution interval is given by [12, 16]

δX ≈ δt1/D. (2)

The advantage of this method is that, for any given value of the resolution, δt ,
differentiability in t is recovered, which allows us to use the differential calculus, even when
dealing with non-differentiability. However, the physical and the mathematical descriptions
are not always coincident. Once δt is given, one can write mathematical differential equations
involving ∂/∂t , make ∂t → 0, then solve for it and determine V (t, δt). Actually, this is a
purely mathematical description with no physical counterpart, since the very consideration of
an interval dt < δt , as occurring in an actual measurement, changes the function V (such a
behaviour, described by Heisenberg’s uncertainty relations, is experimentally verified for any
quantum system). However, making the particular choice dt = δt induces a peculiar subspace
of description where the physics and the mathematics coincide. We work, for the Schrödinger
and Klein–Gordon equations, with such an identification of the time differential and of the
new time resolution variable, but are led to give it up in sections 4 and 5.

The scale dependence of the velocity suggests that we complete the standard equations
of physics by new differential equations of scale. Writing the simplest possible equation for
the variation of the velocity V (t, dt) in terms of the new scale variable dt , as a first-order
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differential equation, ∂V/∂ ln dt = β(V ), then Taylor expanding it, using the fact that V < 1
(in motion-relativistic units c = 1), we obtain the solution [14]

V = v + w = v

[
1 + ζ

( τ

dt

)1−1/D
]

. (3)

The velocity is now made of two independent terms of different order, since v/w ≈ dt1−1/D

is an infinitesimal. We call v the ‘classical part’ of the velocity (see below the definition of the
classical part operator C�) and w its explicitly scale-dependent ‘fractal part’. The transition
scale τ and the scaled fluctuation ζ are chosen such that C�〈ζ 〉 = 0 and C�〈ζ 2〉 = 1.

We recognize here the combination of typical fractal behaviour with fractal dimension D
and of a breaking of the scale symmetry at the scale transition τ . In what follows, τ will be
identified with the Einstein–de Broglie scale of the system (τ = h̄/E), since V ≈ v when
dt � τ (classical behaviour), and V ≈ w when dt � τ (fractal behaviour). Recalling that
D = 2 plays the role of a critical dimension [12, 13], we recover Feynman’s result in the
asymptotic scaling domain, w ∝ (dt/τ )−1/2 [1], which allows us to identify the fractal domain
with the quantum one. In this paper, we consider only the case of fractal dimension 2.

The above description strictly applies to an individual fractal trajectory. Now, one of the
geometric consequences of the non-differentiability and of the subsequent fractal character
of space/spacetime itself (not only of the trajectories) is that there is an infinity of fractal
geodesics relating any couple of points of this space/spacetime [12, 13]. We therefore suggest
[17] that the description of a quantum mechanical particle could be reduced to the geometric
properties of the set of fractal geodesics that corresponds to a given state of this ‘particle’. In
such an interpretation, the ‘particle’ is not identified with a point mass which would follow
the geodesics, but we expect its internal properties, mass, spin and charges, to be defined as
geometric properties of the fractal geodesics themselves. As a consequence, any measurement
is interpreted as a sorting out (or selection) of the geodesics by the measuring device [12, 17].

The transition scale appearing in equation (3) yields two distinct types of behaviour of
the system (particle) depending on the resolution at which it is considered. Equation (3)
multiplied by dt gives the elementary displacement, dX, of the system as a sum of two terms

dX = dx + dξ (4)

dξ representing the ‘fractal part’ and dx the ‘classical part’, defined as

dx = v dt (5)

dξ = a
√

2D (dt2)1/2D (6)

which becomes, for D = 2,

dξ = a
√

2D dt1/2 (7)

with 2D = τ0 = τv2 and C�〈a〉 = 0, C�〈a2〉 = 1. The scale 2D = τ0 will be subsequently
identified with the Compton scale, h̄/mc, i.e. it gives the mass of the particle up to fundamental
constants (see the argument in what follows). We note, from equations (4) to (7), that dx scales
as dt , while dξ scales as dt

1
2 . Therefore, the behaviour of the system is dominated by the dξ

term in the non-differentiable ‘fractal’ domain (below the transition scale), and by the dx one
in the differentiable ‘classical’ domain (above the transition scale).

Now, the Schrödinger, Pauli, Klein–Gordon and Dirac equations give results applying
to measurements performed on quantum objects, but achieved with classical devices, on the
classical/quantum interface. The microphysical scale at which a physical system is considered
induces the sorting out of a bundle of geodesics, corresponding to the scale of the system,
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while the measurement process implies a smoothing out of the geodesic bundle coupled to a
transition from the ‘fractal’ to the ‘classical’ domain. We therefore define an operator C�〈 〉,
which we apply to the fractal variables or functions each time we are drawn to the ‘classical’
domain where the dt behaviour dominates. The effect of C� is to extract, from the fractal
variables or functions to which it is applied, the ‘classical part’, i.e. the part scaling as dt .
This justifies our above writing C�〈ζ 〉 = 0 and C�〈ζ 2〉 = 1, as it is straightforward, from
equation (3), that the terms involving ζ scale as dt1/2 and those involving ζ 2 scale as dt .
This also led us to state, for the a dimensionless coefficient in equation (7), C�〈a〉 = 0 and
C�〈a2〉 = 1. Note the improvement of our new definition in terms of the classical part with
respect to the previous interpretation in terms of an averaging process [12].

2.2. Differential-time symmetry breaking

Another consequence of the non-differentiable nature of space (spacetime) is the breaking of
local differential (proper) time reflection invariance. The derivative with respect to the time t
of a differentiable function f can be written twofold

df

dt
= lim

dt→0

f (t + dt) − f (t)

dt
= lim

dt→0

f (t) − f (t − dt)

dt
. (8)

The two definitions are equivalent in the differentiable case. In the non-differentiable
situation, both definitions fail, since the limits are no longer defined. In the framework of scale
relativity, the physics is related to the behaviour of the function during the ‘zoom’ operation on
the time resolution δt , here identified with the differential element dt , which is now considered
as an independent variable. Two functions f ′

+ and f ′
− are therefore defined as explicit functions

of the two variables t and dt

f ′
+(t, dt) = f (t + dt, dt) − f (t, dt)

dt
(9)

f ′
−(t, dt) = f (t, dt) − f (t − dt, dt)

dt
. (10)

We pass from one to the other by the transformation dt ↔ −dt (local differential time
reflection invariance), which was an implicit discrete symmetry of differentiable physics. The
non-differentiable geometry implies that this symmetry is now broken. When applied to
the space coordinates, these definitions yield two velocities that are fractal functions of the
resolution, V+[x(t), t, dt] and V−[x(t), t, dt]. In order to go back to the ‘classical’ domain and
derive the ‘classical’ velocities appearing in equation (5), we smooth out each fractal geodesic
in the bundle selected by the zooming process with balls of radius larger than τ . This amounts
to carrying out a transition from the non-differentiable to the differentiable domain and leads
us to define two ‘classical’ velocity fields now resolution independent: V+[x(t), t, dt > τ ] =
C�〈V+[x(t), t, dt]〉 = v+[x(t), t] and V−[x(t), t, dt > τ ] = C�〈V−[x(t), t, dt]〉 = v−[x(t), t].
After the transition, there is no reason for these two velocities to be equal. While, in standard
mechanics, the concept of velocity was one-valued, we introduce two velocities instead of one,
even when going back to the ‘classical’ domain. This two-valuedness of the velocity vector
finds its origin in a breaking of the discrete time reflection invariance symmetry (dt ↔ −dt),
which is itself a mathematical consequence of non-differentiability. Therefore, if one reverses
the sign of the time differential element, v+ becomes v−. A natural solution to this problem
is to consider both (dt > 0) and (dt < 0) processes on the same footing, and to combine
them in a unique twin process in terms of which the invariance by reflection is recovered. The
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information needed to describe the system is doubled with respect to the standard description.
A simple and natural way to account for this doubling is to use complex numbers and the
complex product. It is the origin of the complex nature of the wavefunction of quantum
mechanics (see the appendix).

2.3. Covariant derivative operator

Finally, we describe, in the scaling domain, the elementary displacements for both processes,
dX±, as the sum of a classical part, dx± = v± dt , and a fluctuation about this classical part,
dξ±, which is of zero classical part, C�〈dξ±〉 = 0

dX+(t) = v+ dt + dξ+(t) dX−(t) = v− dt + dξ−(t). (11)

Two classical derivatives, d/dt+ and d/dt−, are defined, using the classical part extraction
procedure. Applied to the position vector, x, they yield two classical velocities

d

dt+
x(t) = v+

d

dt−
x(t) = v−. (12)

As regards the fluctuations, the generalization to three dimensions of the fractal behaviour
of equation (6) is written (for D = 2)

C�〈dξ±i dξ±j 〉 = ±2D δij dt i, j = x, y, z. (13)

The classical part of every crossed product dξ±i dξ±j , with i �= j , is null. This is due to the fact
that, even if each term in the product scales as dt1/2, each of them behaves as an independent
fractal fluctuation around its own classical part. Therefore, when we smooth out the geodesics
bundle during the transition from the fractal to the classical domain, we apply a process which
is mathematically (not physically) equivalent to a stochastic ‘Wiener’ process, and also more
general, since we do not need any Gaussian distribution assumption. Thus, we can apply to
the classical part of the dξ(t) product the property of the product of two independent stochastic
variables: i.e. the classical part of the product is the product of the classical parts, and therefore
here zero.

To recover local differential time reversibility in terms of a new complex process [12],
we combine the two derivatives to obtain a complex derivative operator (see the appendix for
a more detailed justification)

d́

dt
= 1

2

(
d

dt+
+

d

dt−

)
− i

2

(
d

dt+
− d

dt−

)
. (14)

Applying this operator to the position vector yields a complex velocity

V = d́

dt
x(t) = V − iU = v+ + v−

2
− i

v+ − v−
2

. (15)

The minus sign in front of the imaginary term is chosen here in order to finally obtain
the Schrödinger equation in terms of ψ . The reverse choice would give the Schrödinger
equation for the complex conjugate of the wavefunction ψ †, and would be therefore physically
equivalent. The real part, V , of the complex velocity, V , represents the standard classical
velocity, while its imaginary part, U, is a new quantity arising from non-differentiability. At
the usual classical limit, v+ = v− = v, so that V = v and U = 0.

Contrary to what happens in the differentiable case, the total derivative with respect to
time of a fractal function f (x(t), t) of integer fractal dimension contains finite terms up to
higher order [19]

df

dt
= ∂f

∂t
+

∂f

∂xi

dXi

dt
+

1

2

∂2f

∂xi∂xj

dXi dXj

dt
+

1

6

∂3f

∂xi∂xj ∂xk

dXi dXj dXk

dt
+ · · · . (16)
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In our case, a finite contribution only proceeds from terms of D-order, while lesser-
order terms yield an infinite contribution and higher-order ones are negligible. For a fractal
dimension D = 2, the total derivative is written

df

dt
= ∂f

∂t
+ ∇f.

dX

dt
+

1

2

∂2f

∂xi∂xj

dXi dXj

dt
. (17)

Usually the term dXi dXj/dt is infinitesimal, but here its classical part reduces to
C�〈dξi dξj 〉/dt , which is now finite. Therefore, thanks to equation (13), the last term of
the classical part of equation (17) amounts to a Laplacian, and we obtain

df

dt±
=

(
∂

∂t
+ v±.∇ ± D	

)
f. (18)

Substituting equation (18) into equation (14), we finally get the expression for the complex
time derivative operator [12]

d́

dt
= ∂

∂t
+ V.∇ − iD	. (19)

The passage from standard classical (everywhere differentiable) mechanics to the new
non-differentiable theory is then implemented by replacing the standard time derivative d/dt

by the new complex operator d́/dt [12]. In other words, this means that d́/dt plays the role
of a ‘covariant derivative operator’, i.e. a tool that implements the form invariance of the
equations. Note that in this replacement, one should be cautious and take into account the fact
that this operator is a linear combination of first- and second-order derivatives, in particular
when applying it to products and composed functions (see [20] and the appendix about the
Leibniz rule for this operator).

2.4. Covariant mechanics induced by scale laws

Let us now recall how one generalizes the standard classical mechanics using this covariance.
We assume that the classical part of the system can be characterized by a Lagrange function
L(x,V, t), from which an action S is defined

S =
∫ t2

t1

L(x,V, t) dt. (20)

The Lagrange function and the action are now complex and are obtained from the classical
Lagrange function L(x, dx/dt, t) and the classical action S by replacing d/dt by d́/dt . The
stationary action principle applied on this complex action yields generalized Euler–Lagrange
equations (see the appendix)

d́

dt

∂L
∂Vi

= ∂L
∂xi

(21)

which are the equations one would obtain from applying the covariant derivative operator
(d/dt → d́/dt) to the standard Euler–Lagrange equations. This demonstrates the self-
consistency of the approach and vindicates the use of complex numbers. Other fundamental
results of standard classical mechanics are also generalized in the same way. In particular,
assuming homogeneity of space in the mean leads one to define a generalized complex
momentum given by

P = ∂L
∂V

. (22)
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If we now consider the action as a functional of the upper limit of integration in
equation (20), the variation of the action from one trajectory to another nearby one yields
a generalization of another well-known relation of mechanics [21]

P = ∇S. (23)

2.5. Generalized Newton–Schrödinger equation

Let us now consider the general case when the structuring external field is a scalar potential,

. The Lagrange function of a closed system, L = 1

2mv2 − 
, is generalized, in the
classical domain, as L(x,V, t) = 1

2mV2 − 
. The Euler–Lagrange equations keep the form
of Newton’s equation of dynamics

m
d́

dt
V = −∇
 (24)

which is now written in terms of complex variables and complex operators.
In the case when there is no external field, the covariance is explicit, since equation (24)

takes the form of the equation of inertial motion

d́V/dt = 0. (25)

In both cases, the complex momentum P reads

P = mV (26)

so that, from equation (23), the complex velocity V appears as a gradient, namely the gradient
of the complex action

V = ∇S/m. (27)

We now introduce a complex wavefunction ψ which is nothing but another expression
for the complex action S

ψ = eiS/S0 . (28)

The factor S0 has the dimension of an action and must be introduced at least for
dimensional reasons. The ψ function is therefore related to the complex velocity appearing
in equation (27) as follows

V = −i
S0

m
∇(ln ψ). (29)

The fundamental equation of dynamics (24) in terms of the new quantity ψ takes the form

iS0
d́

dt
(∇ ln ψ) = ∇
. (30)

Now d́ and ∇ do not commute. However, there is a particular choice of the arbitrary
constant S0 for which d́(∇ ln ψ)/dt is nevertheless a gradient.

Replacing d́/dt by its expression, given by equation (19), and replacingV by its expression
in equation (29), we obtain

∇
 = iS0

[
∂

∂t
∇ ln ψ − i

{
S0

m
(∇ ln ψ.∇)(∇ ln ψ) + D	(∇ ln ψ)

}]
. (31)

Using the remarkable identities

(∇ ln f )2 + 	 ln f = 	f

f
(32)



Quantum–classical transition in scale relativity 939

∇	 = 	∇ (33)

∇(∇f )2 = 2(∇f.∇)(∇f ) (34)

we obtain

∇
(

	ψ

ψ

)
= 2(∇ ln ψ.∇)(∇ ln ψ) + 	(∇ ln ψ). (35)

We recognize, on the right-hand side of this equation, the two terms of equation (31),
respectively, in factor of S0/m and D. Therefore, the choice

S0 = 2mD (36)

allows us to simplify this right-hand side, which becomes a gradient. The wavefunction in
equation (28) is therefore defined as

ψ = eiS/2mD (37)

and is a solution of the fundamental equation of dynamics (24), written as

d́

dt
V = −2D∇

{
i
∂

∂t
ln ψ + D

	ψ

ψ

}
= −∇
/m. (38)

This equation can now be integrated in a universal way which yields

D2	ψ + iD
∂

∂t
ψ − 


2m
ψ = 0 (39)

up to an arbitrary phase factor which may be set to zero by a suitable choice of the phase of ψ .
We are now able to enlighten the meaning of the choice S0 = 2mD. We have seen that it is

only under this particular choice that the fundamental equation of dynamics can be integrated.
If we do not make this choice, the ψ function is a solution of a third-order, non-linear equation
such that no precise physical meaning can be given to it. We therefore claim that this choice
has a profound physical significance, since the meaning of ψ is directly related to the fact that
it is a solution of the Schrödinger equation. In this equation, S0 is nothing but the fundamental
action constant h̄, while D defines the fractal/non-fractal transition (i.e. the transition from
explicit scale dependence to scale independence), which is based on the constant λ = 2D/c.
Therefore, the relation S0 = 2mD becomes a relation between mass and a length scale, which
can be written

λc = h̄

mc
. (40)

We recognize here the definition of the Compton length. Its profound meaning—i.e.
up to the fundamental constants h̄ and c, that of inertial mass itself—is thus given, in our
framework, by the transition scale from explicit scale dependence to scale independence. It
will be completely enlightened in the motion-relativistic case. This length scale is to be
understood as a structure of scale space, not of standard space.

We recover, in this case, the standard form of Schrödinger’s equation

h̄2

2m
	ψ + ih̄

∂

∂t
ψ = 
ψ. (41)

New insight about the statistical meaning of the wavefunction (Born postulate) can also be
gained from the very construction of the theory. Indeed, while in standard quantum mechanics
the existence of a complex wavefunction is set as a founding axiom, in the scale relativity
framework it is related to the twin velocity field of the infinite family of geodesics with
which the ‘particle’ is identified, through equation (29), V = −2iD∇(ln ψ). This opens the
possibility of getting a derivation of Born’s postulate in this context.
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This question has already been considered by Hermann [22], who obtained numerical
solutions of the equation of motion (24) in terms of a large number of explicit trajectories (in
the case of a free particle in a box). He constructed a probability density from these trajectories
and recovered in this way solutions of the Schrödinger equation without writing it and without
using a wavefunction.

Let us indeed derive the Born postulate in the one-dimensional stationary case. Consider
the velocity field given by the real part V of the complex velocity V . It has been defined in
such a way that it is identified with the classical velocity at the classical limit. Since this is
a purely geometrical ‘object’, the density of the fluid corresponding to this velocity field is a
probability density P which satisfies the continuity equation, ∂P/∂t + div(PV ) = 0.

Let us now set ρ = ψψ †, i.e. ψ = √
ρ exp(iS/2mD). By replacing ψ by this expression

in the Schrödinger equation (39), and by using the identity V = 2D∇S, its imaginary part
now reads

∂ρ

∂t
+ div(ρV ) = 0. (42)

Since P and ρ are both solutions of a continuity equation, one can easily prove that their ratio
K = P/ρ is a solution of the equation dK/dt = ∂K/∂t + V.∇K = 0. In the stationary
one-dimensional case it is solved as K = constant, and therefore the squared modulus of
the wavefunction is identified with the probability density after a proper normalization. The
general time-dependent three-dimensional case will be considered in a forthcoming work.

3. Klein–Gordon equation

In section 2, the Schrödinger equation has been derived as a geodesics equation in a fractal
three-space, for non-relativistic motion, in the framework of Galilean scale relativity. In the
rest of this paper we shall be concerned with relativistic motion in the same framework of
Galilean scale relativity and shall derive the corresponding free-particle quantum mechanical
equations (Klein–Gordon’s and Dirac’s) as geodesics equations in a four-dimensional fractal
spacetime.

3.1. Motion-relativistic covariant derivative operator

Most elements of the approach summarized in section 2 remain correct in the motion-relativistic
case, with the time, t, replaced by the proper time, s, as the curvilinear parameter along the
geodesics. Now, not only space, but the full spacetime continuum is considered to be non-
differentiable, thus fractal. We consider a small increment dXµ of a non-differentiable four-
coordinate along one of the geodesics of the fractal spacetime. We can, as above, decompose
dXµ in terms of a classical part C�〈dXµ〉 = dxµ = vµ ds and a fluctuation with respect to
this classical part dξµ, such that C�〈dξµ〉 = 0, by definition. The non-differentiable nature
of spacetime implies the breaking of the reflection invariance at the infinitesimal level. If one
reverses the sign of the proper time differential element, the classical part of the velocity v+

becomes v−. We therefore consider again both the (ds > 0) and (ds < 0) processes on the
same footing. Then the information needed to describe the system is doubled with respect
to the standard differentiable description and can be once more accounted for by the use of
complex numbers. The new complex process, as a whole, recovers again the fundamental
property of microscopic reversibility.

The elementary displacement along a geodesic of fractal dimension D = 2, respectively,
for the (+) and (−) processes, is then

dX
µ
± = d±xµ + dξ

µ
± = v

µ
± ds + u

µ
±
√

2D ds1/2 (43)
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with d±xµ = v
µ
± ds, dξ

µ
± = u

µ
±
√

2D ds1/2 and u
µ
±, a dimensionless fluctuation. The length-

scale 2D is introduced for dimensional purpose. We define the classical derivatives, d/ds+ and
d/ds−, using the classical part extraction procedure exposed in section 2.3, as

d

ds±
f (s) = lim

δs→0±
C�

〈
f (s + δs) − f (s)

δs

〉
. (44)

Once applied to xµ, they yield two classical four-velocities

d

ds+
xµ(s) = vµ

+
d

ds−
xµ(s) = v

µ
−. (45)

They can be combined to construct a complex derivative operator

d́

ds
= 1

2

(
d

ds+
+

d

ds−

)
− i

2

(
d

ds+
− d

ds−

)
. (46)

The application of this operator to the position vector yields a complex four-velocity

Vµ = d́

ds
xµ = V µ − iUµ = v

µ
+ + v

µ
−

2
− i

v
µ
+ − v

µ
−

2
. (47)

As regards the fluctuations, the generalization to four dimensions of the fractal behaviour
described in equation (43) gives

C�
〈
dξ

µ
± dξν

±
〉 = ∓2Dηµν ds. (48)

As noted in section 2.3, each term on the left-hand side product behaves as an independent
fractal fluctuation around its own classical part, which justifies a mathematical treatment
analogous to that of a stochastic Wiener process. We make in the present paper the choice of
a (+,−,−,−) signature for the Minkowskian metric of the classical spacetime, ηµν . Now, a
diffusion (Wiener) process makes sense only in R4 where the ‘metric’ ηµν should be positive
definite, if one wants to interpret the continuity equation satisfied by the probability density
as a Kolmogorov equation [23]. Several proposals have been made to solve this problem
[24, 25], which are equivalent in the end, and amount to transforming a Laplacian operator in
R4 into a Dalembertian. Namely, the two differentials of a function f (x, s) may be written

df

ds±
=

(
∂

∂s
+ v

µ
±∂µ ∓ D∂µ∂µ

)
f. (49)

As we only consider s-stationary functions, not explicitly depending on the proper time
s, the complex covariant derivative operator reduces to

d́

ds
= (Vµ + iD∂µ)∂µ. (50)

The plus sign in front of the Dalembertian comes from the choice of the metric signature.

3.2. Geodesic equation

To write the equation of motion, we use a generalized equivalence principle (identical to a
strong covariance principle). We therefore obtain a geodesic equation in terms of the covariant
derivative

d́Vν

ds
= 0. (51)

We now introduce the complex action according to

dS = ∂νS dxν = −mcVν dxν. (52)
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The complex four-momentum can thus be written as

Pν = mcVν = −∂νS. (53)

Now, the complex action, S, characterizes completely the dynamical state of the particle,
and we can introduce a complex wavefunction

ψ = eiS/S0 . (54)

It is linked to the complex four-velocity by equation (53), which gives

Vν = iS0

mc
∂ν ln ψ. (55)

3.3. Free-particle Klein–Gordon equation

Replacing, in equation (51), the covariant derivative by its expression given by equation (50)
and the complex four-velocity by that of equation (55), we obtain

− S2
0

m2c2
∂µ ln ψ∂µ∂ν ln ψ − S0D

mc
∂µ∂µ∂ν ln ψ = 0. (56)

The particular choice, S0 = h̄ = 2mcD, analogous to the one discussed in section 2.5,
allows us to simplify the left-hand side of equation (56), using the following identity (which
generalizes its three-dimensional counterpart of equation (35))

1

2
∂ν

(
∂µ∂µψ

ψ

)
=

(
∂µ ln ψ +

1

2
∂µ

)
∂µ∂ν ln ψ. (57)

Dividing by the constant factor D2, we obtain the equation of motion of the free particle
under the form

∂ν

(
∂µ∂µψ

ψ

)
= 0. (58)

Therefore, the Klein–Gordon equation (without electromagnetic field)

∂µ∂µψ +
m2c2

h̄2 ψ = 0 (59)

becomes an integral of motion of the free particle, provided the integration constant is chosen
equal to a squared mass term, m2c2/h̄2. The quantum behaviour described by this equation
and the probabilistic interpretation given to ψ is here reduced to the description of a free fall
in a fractal spacetime, in analogy with Einstein’s general relativity where a particle subjected
to the effect of gravitation is described as being in free fall in a curved spacetime.

Another important property is the way the characteristic length of the fractal (quantum)
to differentiable (classical) transition (the Compton length of the particle in its rest frame) and
the mass term in the Klein–Gordon equation appear. Here, as in the non-motion relativistic
case (Schrödinger), we identify the constant 2D with the Compton length h̄/mc, provided S0

is the fundamental action constant h̄, in order to obtain the motion equation under the form of
a vanishing four-gradient. As for the mass term in the final Klein–Gordon equation, it appears
as a mere integration constant. However, it becomes connected to the transition length in the
rest frame when matching these results with the non-relativistic description.
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4. Bi-quaternionic Klein–Gordon equation

It has been known for a long time that the Dirac equation proceeds from the Klein–Gordon
equation when written in a quaternionic form [26, 27]. However, no physical reason was known
for this important mathematical property. We propose in the current section to introduce
naturally, as a consequence of the non-differentiable geometry, a bi-quaternionic covariant
derivative operator, leading to the definition of a bi-quaternionic velocity and wavefunction,
which we use to derive the Klein–Gordon equation in a bi-quaternionic form. We use the
quaternionic formalism, as introduced by Hamilton [28], and further developed by Conway
[27, 29] (see also Synge [30] and Scheffers [31]).

4.1. Symmetry breaking and bi-quaternionic covariant derivative operator

Most of the approach described in section 3 remains applicable. However, the main new
features obtained in the now studied case proceed from a deeper description of the scale
formalism. Namely we now consider a more general case involving the subsequent breaking
of the symmetries:

ds ↔ −ds dxµ ↔ −dxµ xµ ↔ −xµ

Indeed, we have up to now considered only the effect of non-differentiability on the total
derivative d/ds (that amounts to d/dt in the non-relativistic case leading to the Schrödinger
equation). Now the velocity fields of the geodesics bundles are functions of the coordinates,
so that we are led to analyse also the physical meaning of the partial derivatives ∂/∂x (we
use only one coordinate variable in order to simplify the writing) in the decomposition
d/ds = ∂/∂s + (dx/ds)∂/∂x. Strictly speaking, ∂f/∂x does not exist in the non-differentiable
case. We are therefore once again led to introduce fractal functions f (x, δx), explicitly
dependent on the coordinate resolution interval, whose derivative is undefined only at the
unobservable limit δx → 0. As a consequence of the very construction of the derivative,
which needs two points to be defined (instead of one for the position and time coordinates),
there are two definitions of the partial derivative of a fractal function instead of one, namely

∂f

∂x +
= f (x + dx, dx) − f (x, dx)

dx
(60)

∂f

∂x −
= f (x, dx) − f (x − dx, dx)

dx
. (61)

They are transformed one into the other under the reflection dx ↔ −dx.
The xµ ↔ −xµ symmetry corresponds to the parity P and time-reversal T symmetries

the breaking of which is already taken into account in the standard definition of Dirac spinors
in terms of pairs of Pauli spinors [32].

We have already stressed, in section 2.1, that differentiability can be recovered (at large
scales), even when dealing with non-differentiability. However, this implies that, for any set of
differential equations describing a given process, the physical and mathematical descriptions
are only coincident in a limited scale range. We can say that any consistent mathematical tool
lives in a description space which is tangent to the physical space and that the validity of this
tool is therefore limited to a finite scale region around the contact point. For the Schrödinger
and complex Klein–Gordon equations, the tangent mathematical space is such that dt = δt

(Schrödinger) or ds = δs (Klein–Gordon). When jumping to smaller (higher energy) scales,
we are led to give up this peculiar choice, and retain, at the Dirac scale, a new mathematical
description where the differentials and the resolution variables no longer coincide. However,
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this description is only valid at the scales where the Dirac equation applies without corrections
and we shall be led to improve it when going to yet smaller scales.

In the scaling domain, the four spacetime coordinates Xµ(s, εµ, εs) are fractal functions
of the proper time s and of the resolutions εµ and εs . We consider the case when, for an
elementary displacement dXµ corresponding to a shift ds in the curvilinear parameter, the
resolutions verify εµ < dXµ and εs < ds.

We can apply, to these two different elementary displacements, the reasoning developed
in sections 2.2 and 2.3 which yields, considering first the displacement dXµ, the canonical
decomposition

dXµ = dxµ + dξµ (62)

with

C�〈dXµ〉 = dxµ = v
µ
+
µ

ds (63)

dξµ = aµ
+

√
2D(ds2)

1
2D C�

〈
aµ

+

〉 = 0 C�
〈(
aµ

+

)2〉 = 1 (64)

and

−dXµ = δxµ + δξµ (65)

with

C�〈−dXµ〉 = δxµ = v
µ
−
µ

ds (66)

δξµ = a
µ
−
√

2D(ds2)
1

2D C�〈aµ
−〉 = 0 C�〈(aµ

−)2〉 = 1. (67)

In the differentiable case, dXµ = −(−dXµ), and therefore v
µ
+
µ

= −v
µ
−
µ

. This is no longer

the case in the non-differentiable case, where the local symmetry dxµ ↔ −dxµ is broken.
Furthermore, we must also consider the breaking of the symmetry ds ↔ −ds proceeding

from the twofold definition of the derivative with respect to the curvilinear parameter s. Applied
to Xµ, considering an elementary displacement ds, the classical part extraction process gives
two classical derivatives d/ds+ and d/ds−, which yield in turn two classical velocities, which
we denote by v

µ
±
s

+
µ

. Considering now the same extraction process, applied to an elementary

displacement −ds, the classical derivatives d/ds+ and d/ds− allow us again to define two
classical velocities, denoted by v

µ
±
s

−
µ

. We summarize this result as

v
µ
±
s

+
µ

= dxµ

ds±
v

µ
±
s

−
µ

= δxµ

ds±
. (68)

We can, at this stage, define several total derivatives with respect to s of a fractal function
f . We write them—using a compact straightforward notation with summation over repeated
indices—after substituting, in the four-dimensional analogue of equation (17), the expressions
for the derivatives of Xµ which are obtained when using equations (62) to (67) with the
expressions of equation (68) for the classical velocities

df

ds
±
s

±
x

±
y

±
z

±
t

= ∂f

∂s
+

(
v

µ
±
s

±
µ

+ w
µ
±
s

±
µ

)
∂f

∂Xµ
+ a

µ
±aν

±D
∂2f

dXµ dXν
(69)

with

wµ = aµ
√

2D(ds2)
1

2D
− 1

2 . (70)

Now, when we apply the classical part operator to equation (69), using equations (64),
(67) and (70), the wµ disappear at the first order, but, at the second order, for the fractal



Quantum–classical transition in scale relativity 945

dimension D = 2, we obtain the analogue of equation (48)

C�

〈
w

µ
±
s

±
µ

wν
±
s

±
µ

〉
= ∓2Dηµν ds. (71)

The ∓ sign on the right-hand side is the inverse of the s-sign on the left-hand side. We can
thus write the classical part of the total derivatives of equation (69) as

df

ds
±
s

±
x

±
y

±
z

±
t

=
(

∂

∂s
+ v

µ
±
s

±
µ

∂µ ∓ D∂µ∂µ

)
f (72)

where the ∓ sign on the right-hand side is still the inverse of the s-sign.
We apply these derivatives to the position vector Xµ and obtain, as expected,

dXµ

ds
±
s

±
µ

= v
µ
±
s

±
µ

. (73)

We now consider the four fractal functions −Xµ(s, εµ, εs). At this description level, there
is no reason for (−Xµ)(s, εµ, εs) to be everywhere equal to −(Xµ)(s, εµ, εs), owing to a local
breaking of the P and T symmetries. We can therefore apply, to the two different elementary
displacements of these functions, the canonical decomposition and the subsequent reasoning
applied above to the Xµ function, and obtain the following doublings of the classical velocity:

d̃Xµ

ds
±
s

±
µ

= ṽ
µ
±
s

±
µ

. (74)

We use notation analogous to that employed for the Xµ case, with the addition of a tilde.
If we consider the simplest peculiar case when the breaking of the symmetry dxµ ↔ −dxµ is
isotropic as regards the four spacetime coordinates (i.e. the signs corresponding to the four µ

indices are chosen equal), we are left with eight non-degenerate components—four v
µ
±
s

±
µ

and

four ṽ
µ
±
s

±
µ

—which can be used to define a bi-quaternionic four-velocity. We write

Vµ = 1

2

(
vµ

++ + ṽ
µ
− −

) − i

2

(
vµ

++ − ṽ
µ
− −

)
+

[
1

2

(
v

µ
+− + v

µ
−+

) − i

2

(
v

µ
+− − ṽµ

++

)]
e1

+

[
1

2

(
v

µ
−− + ṽ

µ
+−

) − i

2

(
v

µ
−− − ṽ

µ
−+

)]
e2 +

[
1

2

(
v

µ
−+ + ṽµ

++

) − i

2

(
ṽ

µ
−+ + ṽ

µ
+−

)]
e3.

(75)

The freedom in the choice of the actual expression for Vµ is constrained by the following
requirements: at the limit when εµ → dXµ and εs → ds, every ei-term in equation (75) goes
to zero, and, as ṽ

µ
− − = v

µ
−+ in this limit, one recovers the complex velocity of equation (15),

Vµ = [
v

µ
++ +v

µ
−+ − i

(
v

µ
++ −v

µ
−+

)]/
2; at the classical limit, every term in this equation vanishes,

save the real term, and the velocity becomes classical, i.e. real: Vµ = v
µ
++.

The bi-quaternionic velocity thus defined corresponds to a bi-quaternionic derivative
operator −d́/ds, similarly defined, and yielding, when applied to the position vector Xµ, the
corresponding velocity. For instance, the derivative operator attached to the velocity in
equation (75) is written
−d́
ds

= 1

2

(
d

ds
++ +

d̃

ds
−−

)
− i

2

(
d

ds
++ − d̃

ds
−−

)
+

[
1

2

(
d

ds
+− +

d

ds
−+

)

− i

2

(
d

ds
+− − d̃

ds
++

)]
e1 +

[
1

2

(
d

ds
− − +

d̃

ds
+−

)
− i

2

(
d

ds
− − − d̃

ds
−+

)]
e2

+

[
1

2

(
d

ds
−+ +

d̃

ds
++

)
− i

2

(
d̃

ds
−+ +

d̃

ds
+−

)]
e3. (76)
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Substituting equation (72) and its tilde counterpart into equation (76), we obtain the expression
for the bi-quaternionic proper-time derivative operator

−d́
ds

= [1 + e1 + e2 + (1 − i)e3]
∂

∂s
+ Vµ∂µ + iD∂µ∂µ (77)

the + sign in front of the Dalembertian proceeding from the choice of the metric signature
(+,−,−,−). We keep here, for generality, the ∂/∂s term, stressing that it is actually of no
use, since the various physical functions are not explicitly dependent on s. Therefore, the form
that we finally obtain for the bi-quaternionic derivative operator is unchanged with respect to
the previous complex operator: this is another manifestation of the covariance of the scale
relativity description. It is easy to check that this operator, applied to the position vector Xµ,
gives back the bi-quaternionic velocity Vµ of equation (75).

The expression that we have written for Vµ in equation (75) is one among the various
choices we could have retained to define the bi-quaternionic velocity. The main constraint
limiting this choice is the recovery of the complex and real velocities at the non-motion-
relativistic and classical limits. We also choose Vµ so as to obtain the third term on the right-
hand side of equation (77) under the form of a purely imaginary Dalembertian, which allows
us to recover an integrable equation of motion. To any bi-quaternionic velocity satisfying both
prescriptions there corresponds a bi-quaternionic derivative operator −d́/ds, similarly defined,
and yielding this velocity when applied to the position vector Xµ. But, whatever the definition
retained, the derivative operator keeps the same form in terms of the bi-quaternionic velocity
Vµ, as given by equation (83). Therefore, the different choices allowed for its definition merely
correspond to different mathematical representations leading to the same physical result.

4.2. Bi-quaternionic geodesic equation

We now apply the generalized equivalence principle, as developed in section 3.2. The free-
motion equation issued from this principle is the geodesic equation

−d́Vµ

ds
= 0 (78)

where Vµ is the bi-quaternionic four-velocity, e.g., as defined in equation (75).
We introduce the bi-quaternionic action according to

δS = ∂µS dxµ = −mcVµ δxµ. (79)

We thus obtain the bi-quaternionic four-momentum as

Pµ = mcVµ = −∂µS. (80)

We can now define a bi-quaternionic wavefunction, which is again a re-expression of the
action and which we write

ψ−1∂µψ = i

cS0
∂µS (81)

using, on the left-hand side, the quaternionic product. This gives for the bi-quaternionic
four-velocity, as derived from equation (80),

Vµ = i
S0

m
ψ−1∂µψ. (82)

We could choose, for the definition of the wavefunction in equation (81), a commutated
expression on the left-hand side, i.e. (∂µψ)ψ−1 instead of ψ−1∂µψ . But with this reversed
choice, owing to the non-commutativity of the quaternionic product, we could not obtain the
motion equation as a vanishing four-gradient, as in equation (89). Therefore, we retain the
above choice as the simplest one, i.e. yielding an equation which can be integrated.



Quantum–classical transition in scale relativity 947

4.3. Free-particle bi-quaternionic Klein–Gordon equation

We can now replace the covariant derivative operator −d́/ds by its expression in equation (77).
As we only consider s-stationary functions, i.e. functions which do not explicitly depend on
the proper time s, this operator reduces to

−d́
ds

= Vν∂ν + iD∂ν∂ν. (83)

The equation of motion (78), is thus written

(Vν∂ν + iD∂ν∂ν)Vµ = 0. (84)

Replacing Vµ, respectively Vν , by their expressions in equation (82), we obtain

i
S0

m

(
i
S0

m
ψ−1∂νψ∂ν + iD∂ν∂ν

)
(ψ−1∂µψ) = 0. (85)

As in section 2.5, the choice S0 = 2mD allows us to simplify this equation as

ψ−1∂νψ∂ν(ψ
−1∂µψ) + 1

2∂ν∂ν(ψ
−1∂µψ) = 0. (86)

The definition of the inverse of a quaternion

ψψ−1 = ψ−1ψ = 1 (87)

implies that ψ and ψ−1 commute. But this is not necessarily the case for ψ and ∂µψ−1

nor for ψ−1 and ∂µψ and their contravariant counterparts. However, when we differentiate
equation (87) with respect to the coordinates, we obtain

ψ∂µψ−1 = −(∂µψ)ψ−1 ψ−1∂µψ = −(∂µψ−1)ψ (88)

and identical formulae for the contravariant analogues.
Developing equation (86), using equations (88) and the property ∂ν∂ν∂µ = ∂µ∂ν∂ν , we

obtain, after some calculations,

∂µ[(∂ν∂νψ)ψ−1] = 0. (89)

We integrate this four-gradient and write

(∂ν∂νψ)ψ−1 + C = 0 (90)

of which we take the right product by ψ to obtain

∂ν∂νψ + Cψ = 0. (91)

We therefore recognize the Klein–Gordon equation for a free particle with a mass m (so
that m2c2/h̄2 = C), but now generalized to complex quaternions.

5. Dirac equation

We here use a long-known property of the quaternionic formalism, which allows us to obtain
the Dirac equation for a free particle as a mere square root of the Klein–Gordon operator (see,
e.g., [26, 27]). We first develop the Klein–Gordon equation, as

1

c2

∂2ψ

∂t2
= ∂2ψ

∂x2
+

∂2ψ

∂y2
+

∂2ψ

∂z2
− m2c2

h̄2 ψ. (92)

Thanks to the property of the quaternionic and complex imaginary units e2
1 = e2

2 = e2
3 =

i2 = −1, we can write equation (92) under the form

1

c2

∂2ψ

∂t2
= e2

3
∂2ψ

∂x2
e2

2 + ie2
1
∂2ψ

∂y2
i + e2

3
∂2ψ

∂z2
e2

1 + i2
m2c2

h̄2 e2
3ψe2

3. (93)
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We see that equation (93) is obtained by applying twice to the bi-quaternionic
wavefunction ψ the operator ∂/c∂t written as

1

c

∂

∂t
= e3

∂

∂x
e2 + e1

∂

∂y
i + e3

∂

∂z
e1 − i

mc

h̄
e3( )e3. (94)

The three Conway matrices e3( )e2, e1( )i and e3( )e1 [29], figuring in the right-hand
side of equation (94), can be written in the compact form −αk , with

αk =
(

0 σk

σk 0

)

the σk being the three Pauli matrices, while the Conway matrix

e3( )e3 =




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1




is recognized as the Dirac β matrix. We can therefore write equation (94) as the non-covariant
Dirac equation for a free fermion

1

c

∂ψ

∂t
= −αk ∂ψ

∂xk
− i

mc

h̄
βψ. (95)

The covariant form, in the Dirac representation, can be recovered by applying ie3( )e3

to equation (95).
The isomorphism which can be established between the quaternionic and spinorial

algebrae through the multiplication rules applying to the Pauli spin matrices allows us to
identify the wavefunction ψ with a Dirac spinor. Spinors and quaternions are both a
representation of the SL(2, C) group (see [33] for a detailed discussion of the spinorial
properties of bi-quaternions).

6. Pauli equation

Finally it is easy to derive the Pauli equation, since it is known that it can be obtained as a
non-motion relativistic approximation of the Dirac equation [32]. Two of the components of
the Dirac bi-spinor become negligible when v � c, so that they become Pauli spinors (i.e.
in our representation the bi-quaternions are reduced to quaternions) and the Dirac equation is
transformed into a Schrödinger equation for these spinors with a magnetic dipole additional
term. Such an equation is just the Pauli equation. Therefore, the Pauli equation is understood
in the scale-relativistic framework as a manifestation of the fractality of space (but not time),
while the symmetry breaking of space differential elements is nevertheless at work.

7. Conclusion

Four fundamental motion equations of standard microphysics have been recovered, in the
framework of Galilean scale relativity, as geodesic equations in a fractal space (Schrödinger
and Pauli), then in a fractal spacetime (free Klein–Gordon and Dirac). It is interesting to
note how the change from classical to quantum non-relativistic motion, then from quantum
non-relativistic to quantum relativistic motion arises from successive symmetry breakings in
the fractal geodesic picture.

First, the complex nature of the wavefunction is the result of the differential (proper) time
symmetry breaking, which is the simplest effect arising from the fractal structure of space
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(spacetime). It allows a statistical interpretation of this wavefunction in the form of the Born
postulate (which is demonstrated in this framework in the stationary one-dimensional case).
At this stage, Galilean scale relativity with a complex wavefunction permits the recovery of
both the Schrödinger (section 2) and Klein–Gordon (section 3) equations.

To go on with the description of the elementary properties encountered in the
microphysical world, we consider further breakings of fundamental symmetries, namely the
differential coordinate symmetry (dxµ ↔ −dxµ) breaking and the parity and time reversal
symmetry breakings. They provide a four-complex-component wavefunction (i.e. a eight-
component wavefunction), of which the most natural mathematical representation is in terms
of bi-quaternionic numbers. We therefore obtain the spinorial and the particle–anti-particle
nature of elementary objects which we can describe as Dirac spinors. The Klein–Gordon
equation can be recovered from a generalized equivalence principle in a bi-quaternionic form
which naturally yields the free Dirac equation (sections 4 and 5).

The Pauli equation, which is a non-motion relativistic approximation of the Dirac equation,
then follows. It is understood, in the scale-relativistic framework, as a manifestation of the
fractality of space (not time), while the symmetry breaking of the space differential elements
is nevertheless at work (section 6).

It is worth stressing here that a non-differentiable and fractal spacetime is essentially
non-local, since the ‘particles’ are identified with bundles of geodesics. Therefore, we recover
the non-locality of the wavefunction of standard quantum mechanics. Moreover, having now
derived the Dirac equation and the bi-spinor nature of the wavefunction exactly in its standard
quantum mechanical form (there is no missing or additional variable in the non-differentiable
spacetime representation, but only a change of variables with the same number of degrees of
freedom), some profound aspects of quantum mechanics such as the EPR paradox and the
breaking of Bell inequalities are also recovered in the new framework.
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Appendix. Complex numbers and bi-quaternions as a covariant representation

A.1. Introduction

The first axioms of quantum mechanics state that one defines a state function (or probability
amplitude) ψ which is complex, is calculated as ψ = ψ1 + ψ2 for two alternative channels,
and is such that the probability density is given by ψψ † [34]. Is it possible to derive them
from more fundamental principles? Such an understanding, impossible in the framework of
quantum mechanics itself (since these statements are its basic axioms), must be looked for in
an enlarged paradigm. In scale relativity, we extend the foundation stones of physics by giving
up the hypothesis of spacetime differentiability. One of the main and simplest consequences
is that the velocity field becomes two-valued, implying a two-valuedness of the Lagrange
function and therefore of the action. Finally, the wavefunction is defined as a re-expression of
the action, so that it will also be two-valued in the simplest case (see main text).

But we have, up to now, admitted without justification that this two-valuedness is to be
described in terms of complex numbers. Indeed, our equations are not simply a ‘pasting’ of
real and imaginary equations, but involve the complex product from the very beginning of
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the calculations. In particular, the geodesics equation for a free particle takes the form of the
equation of inertial motion

d́2

dt2
xk = 0 (96)

in terms of the ‘covariant’ complex time derivative operator

d́

dt
= ∂

∂t
+ V.∇ − iD	. (97)

Equation (96) amounts to Schrödinger’s equation (see main text). Since it corresponds to
a second derivative, the complex product has mixed the real and imaginary quantities in a very
specific way, so that it is not at all trivial that Schrödinger’s equation is recovered at the end.

The aim of this appendix is to address the question: what is the justification of using
complex numbers, then bi-quaternions for representing the successive doublings of variables?
As we shall see, complex numbers achieve a particular representation of quantum mechanics
in terms of which the fundamental equations take their simplest form. Other choices for the
representation of the two-valuedness and for the new product are possible, but these choices
would give to the equations a more complicated form, involving additional terms (although
the physical meaning would be unchanged). Bi-quaternions follow as a further splitting, at
another level, of the complex numbers.

A.2. Origin of complex numbers and quaternions in quantum mechanics

Let us return to the step of our demonstration where complex numbers are introduced. All
we know is that each component of the velocity now takes two values instead of one. This
means that each component of the velocity becomes a vector in a two-dimensional space, or,
in other words, that the velocity becomes a two-index tensor. So let us introduce generalized
velocities

V k
σ = (V k, Uk) k = 1, 2, 3 σ = −, +. (98)

This can be generalized to other physical quantities affected by the two-valuedness: scalars
A of the position space become vectors Aσ of the new 2D space, etc. While the generalization
of the sum of these quantities is straightforward, Ck

σ = Ak
σ + Bk

σ , the generalization of the
product is an open question at this stage. The problem amounts to finding a generalization
of the standard product that keeps its most fundamental physical properties (e.g., internal
composition law), when some of them cannot escape to be lost (e.g., commutativity when
jumping to quaternions).

From the mathematical point of view, we are here confronted with the well-known problem
of the doubling of algebra (see, e.g., [35]). The effect of the symmetry breaking dt ↔ −dt (or
ds ↔ −ds) is to replace the algebra A, in which the classical physical quantities are defined,
by a direct sum of two exemplars of A, i.e. the space of the pairs (a, b) where a and b belong
to A. The new vectorial space A2 must be supplied with a product in order to become itself
an algebra (of doubled dimension). The same problem shows again when one takes also into
account the symmetry breakings dxµ ↔ −dxµ and xµ ↔ −xµ: this leads to new algebra
doublings. The mathematical solution to this problem is well known: the standard algebra
doubling amounts to supplying A2 with the complex product. Then the doubling R

2 of R is the
algebra C of complex numbers, the doubling C

2 of C is the algebra H of quaternions and the
doubling H

2 of quaternions is the algebra of Graves–Cayley octonions. The problem is that
the iterative doubling leads to a progressive deterioration of the algebraic properties. Namely
the quaternion algebra is non-commutative, while the octonion algebra is also non-associative.
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But an important positive result for physical applications is that the doubling of a metric
algebra is a metric algebra [35].

These mathematical theorems lead us to use complex numbers, then quaternions, in order
to describe the successive doublings due to discrete symmetry breakings at the infinitesimal
level, which are themselves more and more profound consequences of spacetime non-
differentiability. However, we give in what follows complementary arguments of a physical
nature, which show that the use of the complex product in the first algebra doubling has a
simplifying and covariant effect.

In order to simplify the argument, let us consider the generalization of scalar quantities,
for which the product law is the standard product in R.

The first constraint is that the new product must remain an internal composition law. We
also make the simplifying assumption that it remains linear in terms of each of the components
of the two quantities to be multiplied. Therefore, we consider a general form for a bilinear
internal product

Cγ = Aα�
γ

αβBβ (99)

where the matrix �
γ

αβ is a tensor (similar to the structure constants of a Lie group) that defines
completely the new product.

The second physical constraint is that we recover the classical variables and product at the
classical limit. The mathematical equivalent is the requirement that A still be a sub-algebra of
A2. Therefore, we identify a0 ∈ A with (a0, 0) and we set (0, 1) = α. This allows us to write
the new two-dimensional vectors in the simplified form a = a0 + a1α, so that the product is
now written

c = (a0 + a1α)(b0 + b1α) = a0b0 + a1b1α
2 + (a0b1 + a1b0)α. (100)

The problem is now reduced to finding α2, i.e. only two � coefficients instead of eight

α2 = ω0 + ω1α. (101)

Let us now return to the beginning of our construction. We have introduced two elementary
displacements, each of them consisting of two terms, a classical part and a fluctuation (see
equation (11))

dX+(t) = v+ dt + dξ+(t) dX−(t) = v− dt + dξ−(t). (102)

Therefore, one can define velocity fluctuations w+ = dξ+/dt and w− = dξ−/dt , then a
complete velocity in the doubled algebra [36]

V + W =
(

v+ + v−
2

− α
v+ − v−

2

)
+

(
w+ + w−

2
− α

w+ − w−
2

)
. (103)

In terms of standard methods, this writing would be forbidden since the velocity W is
infinite from the viewpoint of usual differential calculus (it is ∝ dt−1/2). But we give meaning
to this concept by considering it as an explicit function of the differential element dt , which
becomes itself a variable.

Now, from the covariance principle, the Lagrange function in the Newtonian case should
strictly be written:

L = 1
2mC�〈(V + W)2〉 = 1

2m(C�〈V2〉 + C�〈W2〉). (104)

We have C�〈W〉 = 0, by definition, and C�〈VW〉 = 0, because they are mutually
independent. But what about C�〈W2〉? The presence of this term would greatly complicate



952 M-N Célérier and L Nottale

all the subsequent developments towards the Schrödinger equation, since it would imply a
fundamental divergence of non-relativistic quantum mechanics. Let us expand it

4C�〈W2〉 = C�〈[(w+ + w−) − α(w+ − w−)]2〉
= C�

〈(
w2

+ + w2
−
)
(1 + α2) − 2α

(
w2

+ − w2
−
)

+ 2w+w−(1 − α2)
〉
. (105)

Since C�
〈
w2

+

〉 = C�
〈
w2

−
〉

and C�〈w+w−〉 = 0 (they are mutually independent), we finally
find that C�〈W2〉 can only vanish provided

α2 = −1 (106)

namely α = ±i, the imaginary. Therefore, we see that the choice of the complex product in the
algebra doubling plays an essential physical role, since it allows the suppression of additional
infinite terms in the final equations of motion.

A.3. Origin of bi-quaternions

A last point to be justified is the use of complex quaternions (bi-quaternions) for describing the
new algebra doublings that lead us to bi-spinors and the Dirac equation. One could think that
the argument given in section A.2 implies the use of Graves–Cayley octonions (and therefore
the giving up of associativity) in the case of three successive doublings as considered in this
paper. However, these three doublings are not on the same footing from a physical point of
view:

(i) The first two-valuedness comes from a discrete symmetry breaking at the level of the
differential invariant, namely dt in the case of a fractal space (yielding the Schrödinger
equation) and ds in the case of a fractal spacetime (yielding the Klein–Gordon equation).
This means that it has an effect on the total derivatives d/dt and d/ds. This two-valuedness
is achieved by the introduction of complex variables.

(ii) The second two-valuedness (differential parity and time reversal violation, dX), which
is specifically introduced and studied in the present paper, comes from a new discrete
symmetry breaking (expected from the giving up of the differentiability hypothesis) on the
spacetime differential element dxµ ↔ −dxµ. It is subsequent to the first two-valuedness,
since it has an effect on the partial derivative ∂µ = ∂/∂xµ that intervenes in the complex
covariant derivative operator, namely,

d́

ds
= (Vµ + iD∂µ)∂µ. (107)

(iii) The third two-valuedness is a standard effect of parity (P) and time reversal (T) in the
motion-relativistic situation, which is not specific to our approach and is already used in
the standard construction of Dirac spinors [32]. It does not lead to a real information
doubling, since Dirac spinors still have only four degrees of freedom as Pauli spinors
do. Therefore, from the second and third doublings, complex numbers, then quaternions,
can be introduced, which will affect variables which are already complex due to the first,
more fundamental, doubling. This leads to the bi-quaternionic tool we use here.

It is worth noting that these symmetry breakings are effective only at the level of the
underlying description of elementary displacements (namely in the non-differentiable fractal
spacetime). The effect of introducing a two-valuedness of variables in terms of double
symmetrical processes amounts to recovering symmetry in terms of the bi-process, and
therefore in terms of the quantum tools which are built from it. In reverse, it opens a possible
way of future investigation into the origin of other features characteristic of the microphysical
world.
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A.4. Complex representation and covariant Euler–Lagrange equations

Let us confirm by another argument that our choice of a representation in terms of complex
numbers for the two-valuedness of the velocity (namely in the minimal situation that leads to
the Schrödinger equation) is a simplifying and covariant choice. We demonstrate hereafter
that the standard form of the Euler–Lagrange equations is conserved when we combine the
two velocities in terms of a unique complex velocity.

In a general way, the Lagrange function is expected to be a function of the variables x and
their time derivatives ẋ. We have found that the number of velocity components ẋ is doubled,
so that we could have written

L = L(x, ẋ+, ẋ−, t). (108)

Instead, we have made the choice to write the Lagrange function as

L = L(x,V, t). (109)

We now justify this choice by the covariance principle. Re-expressed in terms of ẋ+ and
ẋ−, the Lagrange function is written

L = L

(
x,

1 − i

2
ẋ+ +

1 + i

2
ẋ−, t

)
. (110)

Therefore we obtain
∂L

∂ẋ+
= 1 − i

2

∂L

∂V
∂L

∂ẋ−
= 1 + i

2

∂L

∂V
(111)

while the new covariant time derivative operator reads

d́

dt
= 1 − i

2

d

dt+
+

1 + i

2

d

dt−
. (112)

Let us write the stationary action principle in terms of the Lagrange function of
equation (108)

δS = δ

∫ t2

t1

L(x, ẋ+, ẋ−, t) dt = 0. (113)

It becomes∫ t2

t1

(
∂L

∂x
δx +

∂L

∂ẋ+
δẋ+ +

∂L

∂ẋ−
δẋ−

)
dt = 0. (114)

Since δẋ+ = d(δx)/dt+ and δẋ− = d(δx)/dt−, it takes the form∫ t2

t1

(
∂L

∂x
δx +

∂L

∂V

[
1 − i

2

d

dt+
+

1 + i

2

d

dt−

]
δx

)
dt = 0 (115)

i.e. ∫ t2

t1

(
∂L

∂x
δx +

∂L

∂V
d́

dt
δx

)
dt = 0. (116)

The subsequent demonstration of the Lagrange equations from the stationary action
principle relies on an integration by parts. This integration by parts cannot be performed in
the usual way without a specific analysis, because it involves the new covariant derivative.

The first point to consider is the Leibniz rule for the covariant derivative operator d́/dt .
Since d́/dt = ∂/dt +V.∇ − iD	 is a linear combination of first- and second-order derivatives,
the same is true of its Leibniz rule. This implies an additional term in the expression for the
derivative of a product [20]:

d́

dt

(
∂L

∂V
.δx

)
= d́

dt

∂L

∂V
.δx +

∂L

∂V
.

d́

dt
δx − 2iD∇ ∂L

∂V
.∇δx. (117)
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Since δx(t) is not a function of x, the additional term vanishes. Therefore, the above
integral becomes∫ t2

t1

[(
∂L

∂x
− d́

dt

∂L

∂V

)
δx +

d́

dt

(
∂L

∂V
.δx

)]
dt = 0. (118)

The second point is the integration of the covariant derivative. We define a new integral
as being the inverse operation of the covariant derivation, i.e.

−
∫

d́f = f (119)

in terms of which one obtains

−
∫ t2

t1

d́

(
∂L

∂V
.δx

)
=

[
∂L

∂V
.δx

]t2

t1

= 0 (120)

since δx(t1) = δx(t2) = 0 by definition of the variation principle. Therefore, the action
integral becomes∫ t2

t1

(
∂L

∂x
− d́

dt

∂L

∂V

)
δx dt = 0. (121)

And finally we obtain generalized Euler–Lagrange equations that read

d́

dt

∂L

∂V
= ∂L

∂x
. (122)

They take the form obtained by writing a stationary action principle based on
equation (109). Moreover, once the transformation d/dt → d́/dt is done, this form is nothing
but the standard classical form. This result reinforces the identification of our tool with a
‘quantum-covariant’ representation, since this Euler–Lagrange equation can be integrated in
the form of a Schrödinger equation.
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